2,042 research outputs found

    Field-induced Coulomb coupling in semiconductor macroatoms: application to "single-electron" quantum devices

    Get PDF
    A novel approach for the control of exciton-exciton Coulomb coupling in semiconductor macroatoms/molecules is proposed. We show that by applying properly tailored external fields, we can induce ---or significantly reinforce--- excitonic dipoles, which in turn allows to control and magnify intra- as well as inter-dot few-exciton effects. Such dipole-dipole interaction mechanism will be accounted for within a simple analytical model, which is found to be in good agreement with fully three-dimensional calculations. The proposed approach may play an important role for the design and realization of fully-optical quantum gates as well as ultrafast optical switches

    Dissipation through spin Coulomb drag in electronic spin dynamics

    Get PDF
    Spin Coulomb drag (SCD) constitutes an intrinsic source of dissipation for spin currents in metals and semiconductors. We discuss the power loss due to SCD in potential spintronics devices and analyze in detail the associated damping of collective spin-density excitations. It is found that SCD contributes substantially to the linewidth of intersubband spin plasmons in parabolic quantum wells, which suggests the possibility of a purely optical quantitative measurement of the SCD effect by means of inelastic light scattering

    Metric space analysis of systems immersed in a magnetic field

    Get PDF
    Understanding the behavior of quantum systems subject to magnetic fields is of fundamental importance and underpins quantum technologies. However, modeling these systems is a complex task, because of many-body interactions and because many-body approaches such as density functional theory get complicated by the presence of a vector potential into the system Hamiltonian. We use the metric space approach to quantum mechanics to study the effects of varying the magnetic vector potential on quantum systems. The application of this technique to model systems in the ground state provides insight into the fundamental mapping at the core of current density functional theory, which relates the many-body wavefunction, particle density and paramagnetic current density. We show that the role of the paramagnetic current density in this relationship becomes crucial when considering states with different magnetic quantum numbers, mm. Additionally, varying the magnetic field uncovers a richer complexity for the "band structure" present in ground state metric spaces, as compared to previous studies varying scalar potentials. The robust nature of the metric space approach is strengthened by demonstrating the gauge invariance of the related metric for the paramagnetic current density. We go beyond ground state properties and apply this approach to excited states. The results suggest that, under specific conditions, a universal behavior may exist for the relationships between the physical quantities defining the system

    Exact and LDA entanglement of tailored densities in an interacting one-dimensional electron system

    Full text link
    We calculate the `exact' potential corresponding to a one-dimensional interacting system of two electrons with a specific, tailored density. We use one-dimensional density-functional theory with a local-density approximation (LDA) on the same system and calculate densities and energies, which are compared with the `exact' ones. The `interacting-LDA system' corresponding to the LDA density is then found and its potential compared with the original one. Finally we calculate and compare the spatial entanglement of the electronic systems corresponding to the interacting-LDA and original interacting system.Comment: 7 pages, 4 figure

    Dissipation through spin Coulomb drag in electronic spin transport and optical excitations

    Get PDF
    Spin Coulomb drag (SCD) constitutes an intrinsic source of dissipation for spin currents in metals and semiconductors. We discuss the power loss due to SCD in potential spintronics devices and analyze in detail the associated damping of collective spin-density excitations. It is found that SCD contributes substantially to the linewidth of intersubband spin plasmons in semiconductor quantum wells, which suggests the possibility of a purely optical quantitative measurement of the SCD effect in a parabolic well through inelastic light scattering

    Intersubband spin-orbit coupling and spin splitting in symmetric quantum wells

    Get PDF
    In semiconductors with inversion asymmetry, spin-orbit coupling gives rise to the well-known Dresselhaus and Rashba effects. If one considers quantum wells with two or more conduction subbands, an additional, intersubband-induced spin-orbit term appears whose strength is comparable to the Rashba coupling, and which remains finite for symmetric structures. We show that the conduction band spin splitting due to this intersubband spin-orbit coupling term is negligible for typical III-V quantum wells

    Feasibility of approximating spatial and local entanglement in long-range interacting systems using the extended Hubbard model

    Full text link
    We investigate the extended Hubbard model as an approximation to the local and spatial entanglement of a one-dimensional chain of nanostructures where the particles interact via a long range interaction represented by a `soft' Coulomb potential. In the process we design a protocol to calculate the particle-particle spatial entanglement for the Hubbard model and show that, in striking contrast with the loss of spatial degrees of freedom, the predictions are reasonably accurate. We also compare results for the local entanglement with previous results found using a contact interaction (PRA, 81 (2010) 052321) and show that while the extended Hubbard model recovers a better agreement with the entanglement of a long-range interacting system, there remain realistic parameter regions where it fails to predict the quantitative and qualitative behaviour of the entanglement in the nanostructure system.Comment: 6 pages, 5 figures and 1 table; added results with correlated hopping term; accepted by EP

    Effect of matrix parameters on mesoporous matrix based quantum computation

    Full text link
    We present a solid state implementation of quantum computation, which improves previously proposed optically driven schemes. Our proposal is based on vertical arrays of quantum dots embedded in a mesoporous material which can be fabricated with present technology. We study the feasibility of performing quantum computation with different mesoporous matrices. We analyse which matrix materials ensure that each individual stack of quantum dots can be considered isolated from the rest of the ensemble-a key requirement of our scheme. This requirement is satisfied for all matrix materials for feasible structure parameters and GaN/AlN based quantum dots. We also show that one dimensional ensembles substantially improve performances, even of CdSe/CdS based quantum dots

    The entanglement of few-particle systems when using the local-density approximation

    Full text link
    In this chapter we discuss methods to calculate the entanglement of a system using density-functional theory. We firstly introduce density-functional theory and the local-density approximation (LDA). We then discuss the concept of the `interacting LDA system'. This is characterised by an interacting many-body Hamiltonian which reproduces, uniquely and exactly, the ground state density obtained from the single-particle Kohn-Sham equations of density-functional theory when the local-density approximation is used. We motivate why this idea can be useful for appraising the local-density approximation in many-body physics particularly with regards to entanglement and related quantum information applications. Using an iterative scheme, we find the Hamiltonian characterising the interacting LDA system in relation to the test systems of Hooke's atom and helium-like atoms. The interacting LDA system ground state wavefunction is then used to calculate the spatial entanglement and the results are compared and contrasted with the exact entanglement for the two test systems. For Hooke's atom we also compare the entanglement to our previous estimates of an LDA entanglement. These were obtained using a combination of evolutionary algorithm and gradient descent, and using an LDA-based perturbative approach. We finally discuss if the position-space information entropy of the density---which can be obtained directly from the system density and hence easily from density-functional theory methods---can be considered as a proxy measure for the spatial entanglement for the test systems.Comment: 12 pages and 5 figures
    • …
    corecore